Introduction to sequencing with Python (part three)
Under Development!
This tutorial is not in its final state. The content may change a lot in the next months. Because of this status, it is also not listed in the topic pages.
Author(s) | Anton Nekrutenko |
Reviewers |
OverviewQuestions:Objectives:
Understanding Python lists
Understanding Python dictionaries
Learnig about dynamic programming
Understanding of lists and dictionaries
Learning about dynamic programming
Learning about how to translate DNA in Python
Time estimation: 1 hourSupporting Materials:Published: Feb 6, 2024Last modification: Feb 20, 2024License: Tutorial Content is licensed under Creative Commons Attribution 4.0 International License. The GTN Framework is licensed under MITpurl PURL: https://gxy.io/GTN:T00404version Revision: 2
Best viewed in a Jupyter NotebookThis tutorial is best viewed in a Jupyter notebook! You can load this notebook one of the following ways
Run on the GTN with JupyterLite (in-browser computations)
Launching the notebook in Jupyter in Galaxy
- Instructions to Launch JupyterLab
- Open a Terminal in JupyterLab with File -> New -> Terminal
- Run
wget https://training.galaxyproject.org/training-material/topics/data-science/tutorials/gnmx-lecture4/data-science-gnmx-lecture4.ipynb
- Select the notebook that appears in the list of files on the left.
Downloading the notebook
- Right click one of these links: Jupyter Notebook (With Solutions), Jupyter Notebook (Without Solutions)
- Save Link As..
Preclass prep: Chapters 5 and 7 from “Think Python”
This material uses examples from notebooks developed by Ben Langmead
Prep
- Start JupyterLab
- Within JupyterLab start a new Python3 notebook
- Open this page in a new browser tab
Lists: Dynamic programming in sequence alignment
Dynamic programming matrix as a 2D list
An excellent way to illustrate the utility of lists is to implement a dynamic programming algorithm for sequence alignment. Suppose we have two sequences that deliberately have different lengths:
\[\texttt{G C T A T A C}$\]and
\[\texttt{G C G T A T G C}$\]Let’s represent them as the following matrix where the first character \(\epsilon\) represents an empty string:
\[\begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon \\ \hline G\\ \hline C\\ \hline G\\ \hline T\\ \hline A\\ \hline T\\ \hline G\\ \hline C \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal.\]In this matrix, the cells are addressed as shown below. They filled in using the following logic:
\[D[i,j] = min\begin{cases} \color{green}{D[i-1,j] + 1} & \\ \color{blue}{D[i,j-1] + 1} & \\ \color{red}{D[i-1,j-1] + \delta(x[i-1],y[j-1])} \end{cases}\]where \(\color{green}{green}\) is upper cell, \(\color{blue}{blue}\) is left cell, and \(\color{red}{red}\) is upper-left cell:
\[\begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon & & & & & & & & \\ \hline G & \\ \hline C & & & \color{red}{D[2,2]} & \color{green}{D[2,3]}\\ \hline G & & & \color{blue}{D[3,2]} & D[3,3]\\ \hline T & \\ \hline A & \\ \hline T & \\ \hline G & \\ \hline C & \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal.\]Initializing the matrix
Let’s initialize the first column and first row of the matrix. Because the distance between a string and an empty string is equal to the length of the string (e.g., a distance between, say, string \(\texttt{TCG}\) and an empty string is 3) this resulting matrix will look like this:
\[\begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\\ \hline G & 1\\ \hline C & 2\\ \hline G & 3\\ \hline T & 4\\ \hline A & 5\\ \hline T & 6\\ \hline G & 7\\ \hline C & 8 \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal.\]This can be achieved with the following code:
D = np.zeros((len(x)+1, len(y)+1), dtype=int)
D[0, 1:] = range(1, len(y)+1)
D[1:, 0] = range(1, len(x)+1)
Filling the matrix
Now we can fill the entire matrix by using two nested loops: one iterating over \(i\) coordinate (sequence \(x\)) and the other iterating over \(j\) coordinate (sequence \(y\)):
for i in range(1, len(x)+1):
for j in range(1, len(y)+1):
delt = 1 if x[i-1] != y[j-1] else 0
D[i, j] = min(D[i-1, j-1]+delt, D[i-1, j]+1, D[i, j-1]+1)
Let’s start with the cell between \(\texttt{G}\) and \(\texttt{G}\). Recall that:
\[D[i,j] = min\begin{cases} \color{green}{D[i-1,j] + 1} & \\ \color{blue}{D[i,j-1] + 1} & \\ \color{red}{D[i-1,j-1] + \delta(x[i-1],y[j-1])} \end{cases}\]where \(\delta(x[i-1],y[j-1]) = 0\) if \(x[i-1] = y[j-1]\) and \(1\) otherwise. And now let’s color each of the cells corresponding to each part of the above expression:
\[\begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon & \color{red}0 & \color{green}1 & 2 & 3 & 4 & 5 & 6 & 7\\ \hline G & \color{blue}1\\ \hline C & 2\\ \hline G & 3\\ \hline T & 4\\ \hline A & 5\\ \hline T & 6\\ \hline G & 7\\ \hline C & 8 \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal.\]In this specific case:
\[D[i,j] = min\begin{cases} \color{green}{D[i-1,j] + 1}\ or\ 0+0=0 & \\ \color{blue}{D[i,j-1] + 1}\ or\ 1+1=2 & \\ \color{red}{D[i-1,j-1] + \delta(x[i-1],y[j-1])}\ or\ 1+1=2 \end{cases}\]The minimum of 0, 2, and 2 will be 0, so we are putting zero into that cell:
\[\begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon & \color{red}0 & \color{green}1 & 2 & 3 & 4 & 5 & 6 & 7\\ \hline G & \color{blue}1 & \color{red}0\\ \hline C & 2\\ \hline G & 3\\ \hline T & 4\\ \hline A & 5\\ \hline T & 6\\ \hline G & 7\\ \hline C & 8 \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal.\]Using this logic we can fill the entire matrix like this:
\[\begin{array}{ c | c | c | c | c | c | c} & \epsilon & G & C & T & A & T & A & C\\ \hline \epsilon & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\\ \hline G & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6\\ \hline C & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5\\ \hline G & 3 & 2 & 1 & 1 & 2 & 3 & 4 & 5\\ \hline T & 4 & 3 & 2 & 1 & 2 & 2 & 3 & 4\\ \hline A & 5 & 4 & 3 & 2 & 1 & 2 & 2 & 3\\ \hline T & 6 & 5 & 4 & 3 & 2 & 1 & 2 & 3\\ \hline G & 7 & 6 & 5 & 4 & 3 & 2 & 2 & 3\\ \hline C & 8 & 7 & 6 & 5 & 4 & 3 & 3 & \color{red}2 \end{array} \\ \textbf{Note}: sequence\ \texttt{X}\ is\ vertical\ and\ sequence\ \texttt{Y}\ is\ horizontal.\]The lower rightmost cell highlighted in red is special. It contains the value for the edit distance between the two strings. The following Python script implements this idea. You can see that it is essentially instantaneous:
import numpy as np
def edDistDp(x, y):
""" Calculate edit distance between sequences x and y using
matrix dynamic programming. Return matrix and distance. """
D = np.zeros((len(x)+1, len(y)+1), dtype=int)
D[0, 1:] = range(1, len(y)+1)
D[1:, 0] = range(1, len(x)+1)
for i in range(1, len(x)+1):
for j in range(1, len(y)+1):
delt = 1 if x[i-1] != y[j-1] else 0
D[i, j] = min(D[i-1, j-1]+delt, D[i-1, j]+1, D[i, j-1]+1)
return D,D[len(x),len(y)]
A graphical representation of the matrix between GCGTATGCACGC
and GCTATGCCACGC
looks like this:
This image is generated using Seaborn package using matrix directly:
sns.heatmap(D,annot=True,cmap="crest")
Dictionaries: Translating sequences
Perhaps the best way to demonstrate the utility of dictionaries is by using DNA-to-Protein translation as an example.
Using dictionaries to translate DNA
The following dictionary maps codons to corresponding amino acid translations. In this case, codon is the key and amino acid is the value:
table = {
'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M',
'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T',
'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K',
'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R',
'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L',
'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P',
'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q',
'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R',
'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V',
'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A',
'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E',
'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G',
'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S',
'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L',
'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_',
'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W',
}
Let’s generate a random DNA sequence:
import random
seq = "".join([random.choice('atcg') for x in range(100)])
seq
'agaccgtagcccaagtgcgtttgaatgtggctacttgggaggatttcattgcggtctgtctccgtacttgttattggtcttctttctgcattatgacgca'
To translate this sequence we write a code that uses a for
loop that iterates over the DNA sequence in steps of 3, creating a codon at each iteration. If the codon is less than 3 letters long, the loop is broken. The resulting amino acid is then added to the translation
string:
translation = ""
for i in range(0, len(seq), 3):
codon = seq[i:i+3].upper()
if len(codon) < 3: break
if codon in table:
translation += table[codon]
else:
translation += "X"
print("Translation:", translation)
Translation: RP_PKCV_MWLLGRISLRSVSVLVIGLLSAL_R
Note that the code uses the upper()
method to ensure the codon is in uppercase since the table dictionary is case-sensitive. Additionally, the code checks if the codon is in the table dictionary and if not, it adds the letter “X” to the translation. This is a common way to represent unknown or stop codons in a protein sequence.
translation
'RP_PKCV_MWLLGRISLRSVSVLVIGLLSAL_R'
Now we define a function that would perform translation so that we can reuse it later:
def translate(seq):
translation = ''
table = {
'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M',
'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T',
'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K',
'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R',
'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L',
'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P',
'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q',
'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R',
'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V',
'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A',
'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E',
'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G',
'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S',
'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L',
'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_',
'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W',
}
for i in range(0, len(seq), 3):
codon = seq[i:i+3].upper()
if len(codon) < 3: break
if codon in table:
translation += table[codon]
else:
translation += "X"
return(translation)
translate(seq)
'RP_PKCV_MWLLGRISLRSVSVLVIGLLSAL_R'
Expanding to multiple phases (frames)
We can further modify the function by adding a phase
parameter that would allow translating in any of the three phases:
def translate_phase(seq,phase):
translation = ''
table = {
'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M',
'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T',
'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K',
'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R',
'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L',
'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P',
'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q',
'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R',
'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V',
'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A',
'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E',
'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G',
'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S',
'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L',
'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_',
'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W',
}
assert phase >= 0 and phase <= 3, "Phase parameter can only be set to 0, 1, or 2! You specified {}".format(phase)
for i in range(phase, len(seq), 3):
codon = seq[i:i+3].upper()
if len(codon) < 3: break
if codon in table:
translation += table[codon]
else:
translation += "X"
return(translation)
translate_phase(seq,2)
'TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT'
To translate in all six reading frames (three of the “+” strand and three of the “-“ strand) we need to be able to create a reverse complement of the sequence. Let’s write a simple function for that.
The cell below implements a function revcomp
that takes a DNA sequence as input and returns its reverse complement. It works by first reversing the sequence using the slice
notation seq[::-1]
, which returns the sequence in reverse order. Then, the translate
method is used with the str.maketrans
function to replace each occurrence
of ‘a’, ‘t’, ‘g’, ‘c’, ‘A’, ‘T’, ‘G’, and ‘C’ in the reversed sequence with ‘t’, ‘a’, ‘c’, ‘g’, ‘T’, ‘A’, ‘C’, and ‘G’, respectively:
import string
def revcomp(seq):
return seq[::-1].translate(str.maketrans('atgcATCG','tagcTACG'))
Now let’s use this function to create translation in all six reading frames. The cell below uses a for
loop that iterates over the range (0, 3)
, representing the different phases
(or starting positions) of the translation. At each iteration, the translate_phase
function is called with the DNA sequence and the current phase, and the resulting protein sequence
is appended to the translations
list along with the phase
and the strand
orientation (+ or -):
translations = []
for i in range(0,3):
translations.append((translate_phase(seq,i),str(i),'+'))
translations.append((translate_phase(revcomp(seq),i),str(i),'-'))
translations
[('RP_PKCV_MWLLGRISLRSVSVLVIGLLSAL_R', '0', '+'),
('SLIIDKQQE_ELATDRRIKWWELRRLKASSRSL', '0', '-'),
('DRSPSAFECGYLGGFHCGLSPYLLLVFFLHYDA', '1', '+'),
('R__STNNRNKN_PQTGESNGGNYGD_KRVPVAC', '1', '-'),
('TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT', '2', '+'),
('ADNRQTTGIRTSHRQANQMVGTTEIESEFP_P', '2', '-')]
Finding coordinates of continuous translations
The translation we’ve generated above contains stops (e.g., _
symbols). The actual biologically relevant protein sequences are between stops.
We now need to split translation strings into meaningful peptide sequences and compute their coordinates. Let’s begin by splitting a string on _
and computing the start and end positions of each peptide:
string = "aadsds_dsds_dsds"
split_indices = []
for i,char in enumerate(string):
if char == "_":
split_indices.append(i)
print(split_indices)
[6, 11]
The code above generates a list of split indices for a string. The list contains the indices of the characters in the string that match a specified character (in this case, the underscore _
character).
The enumerate
function is used to loop over the characters in the string, and at each iteration, the current index and character are stored in the variables i
and char
, respectively.
If the current character matches the specified character, the index i
is appended to the split_indices
list.
After the loop, the split_indices
list is printed to the console. For the input string "aadsds_dsds_dsds"
, the output would be [6, 11]
, indicating that the dashes are located at indices 6 and 11.
But we actually need coordinates of peptides bound by _
characters. To get to this let’s first modify split_indices
by adding the beginning and end:
string = "aadsds_dsds_dsds"
split_indices = []
for i,char in enumerate(string):
if char == "_":
split_indices.append(i)
split_indices.insert(0,-1)
split_indices.append(len(string))
print(split_indices)
[-1, 6, 11, 16]
Now, let’s convert these to ranges and also stick the peptide sequence in:
string = "aadsds_dsds_dsds"
split_indices = []
for i, char in enumerate(string):
if char == "_":
split_indices.append(i)
split_indices.insert(0, -1)
split_indices.append(len(string))
orfs = string.split('_')
parts = []
for i in range(len(split_indices)-1):
parts.append((orfs[i],split_indices[i]+1, split_indices[i+1]))
print(parts)
[('aadsds', 0, 6), ('dsds', 7, 11), ('dsds', 12, 16)]
Now let’s convert this to function:
def extract_coords(translation):
split_indices = []
for i, char in enumerate(translation):
if char == "_":
split_indices.append(i)
split_indices.insert(0, -1)
split_indices.append(len(translation))
parts = []
for i in range(len(split_indices)-1):
parts.append((translation.split('_')[i], split_indices[i] + 1, split_indices[i + 1]))
return(parts)
extract_coords(string)
[('aadsds', 0, 6), ('dsds', 7, 11), ('dsds', 12, 16)]
And specify the right parameters to make it truly generic:
def extract_coords_with_annotation(separator,translation,phase,strand):
split_indices = []
for i,char in enumerate(translation):
if char == separator:
split_indices.append(i)
split_indices.insert(0,-1)
split_indices.append(len(translation))
parts = []
for i in range(len(split_indices)-1):
parts.append((translation.split(separator)[i], phase, strand, split_indices[i]+1, split_indices[i+1]))
return(parts)
extract_coords_with_annotation('_', string, '0', '+')
[('aadsds', '0', '+', 0, 6),
('dsds', '0', '+', 7, 11),
('dsds', '0', '+', 12, 16)]
Analyzing all translations of a given sequence
We begin by parsing the translations
list we defined above:
all_translations = []
for item in translations:
all_translations.append(extract_coords_with_annotation('_',item[0],item[1],item[2]))
all_translations
[[('RP', '0', '+', 0, 2),
('PKCV', '0', '+', 3, 7),
('MWLLGRISLRSVSVLVIGLLSAL', '0', '+', 8, 31),
('R', '0', '+', 32, 33)],
[('SLIIDKQQE', '0', '-', 0, 9),
('ELATDRRIKWWELRRLKASSRSL', '0', '-', 10, 33)],
[('DRSPSAFECGYLGGFHCGLSPYLLLVFFLHYDA', '1', '+', 0, 33)],
[('R', '1', '-', 0, 1),
('', '1', '-', 2, 2),
('STNNRNKN', '1', '-', 3, 11),
('PQTGESNGGNYGD', '1', '-', 12, 25),
('KRVPVAC', '1', '-', 26, 33)],
[('TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT', '2', '+', 0, 32)],
[('ADNRQTTGIRTSHRQANQMVGTTEIESEFP', '2', '-', 0, 30),
('P', '2', '-', 31, 32)]]
Now the problem with this list is that it is nested. However, we need to make it flat:
flat_list = []
for sublist in all_translations:
for item in sublist:
flat_list.append(item)
flat_list
[('RP', '0', '+', 0, 2),
('PKCV', '0', '+', 3, 7),
('MWLLGRISLRSVSVLVIGLLSAL', '0', '+', 8, 31),
('R', '0', '+', 32, 33),
('SLIIDKQQE', '0', '-', 0, 9),
('ELATDRRIKWWELRRLKASSRSL', '0', '-', 10, 33),
('DRSPSAFECGYLGGFHCGLSPYLLLVFFLHYDA', '1', '+', 0, 33),
('R', '1', '-', 0, 1),
('', '1', '-', 2, 2),
('STNNRNKN', '1', '-', 3, 11),
('PQTGESNGGNYGD', '1', '-', 12, 25),
('KRVPVAC', '1', '-', 26, 33),
('TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT', '2', '+', 0, 32),
('ADNRQTTGIRTSHRQANQMVGTTEIESEFP', '2', '-', 0, 30),
('P', '2', '-', 31, 32)]
Now we can load the list into Pandas
and plot away:
import pandas as pd
df = pd.DataFrame(flat_list,columns=['aa','frame','phase','start','end'])
df
aa | frame | phase | start | end | |
---|---|---|---|---|---|
0 | RP | 0 | + | 0 | 2 |
1 | PKCV | 0 | + | 3 | 7 |
2 | MWLLGRISLRSVSVLVIGLLSAL | 0 | + | 8 | 31 |
3 | R | 0 | + | 32 | 33 |
4 | SLIIDKQQE | 0 | - | 0 | 9 |
5 | ELATDRRIKWWELRRLKASSRSL | 0 | - | 10 | 33 |
6 | DRSPSAFECGYLGGFHCGLSPYLLLVFFLHYDA | 1 | + | 0 | 33 |
7 | R | 1 | - | 0 | 1 |
8 | 1 | - | 2 | 2 | |
9 | STNNRNKN | 1 | - | 3 | 11 |
10 | PQTGESNGGNYGD | 1 | - | 12 | 25 |
11 | KRVPVAC | 1 | - | 26 | 33 |
12 | TVAQVRLNVATWEDFIAVCLRTCYWSSFCIMT | 2 | + | 0 | 32 |
13 | ADNRQTTGIRTSHRQANQMVGTTEIESEFP | 2 | - | 0 | 30 |
14 | P | 2 | - | 31 | 32 |
Now let’s plot it:
import altair as alt
plus = alt.Chart(df[df['phase']=='+']).mark_rect().encode(
x = alt.X('start:Q'),
x2 = alt.X2('end:Q'),
y = alt.Y('frame:N'),
color='frame',
tooltip='aa:N'
).properties(
width=600,
height=100)
minus = alt.Chart(df[df['phase']=='-']).mark_rect().encode(
x = alt.X('start:Q',sort=alt.EncodingSortField('start:Q', order='descending')),
x2 = alt.X2('end:Q'),
y = alt.Y('frame:N'),
color='frame',
tooltip='aa:N'
).properties(
width=600,
height=100)
plus & minus